Networking Basics

02 - Ethernet

Wolfgang Tremmel academy@de-cix.net

Where networks meet

DECIX

www.de-cix.net

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net

Networking Basics DE-CIX Academy

03 - IP, 03a - Routing, 03b - Global routing

Ethernet

A Modern Ethernet Device Nokia 7950

- As used by DE-CIX
- Connects 100s of devices
- using optical interfaces
- with speeds up to 400Gbps

Attribution: DE-CIX

Another Modern Ethernet Device Fritzbox

- as used at home
- connects 4 devices directly
- using copper interfaces
- with speeds up to 1Gbps

Attribution: Wolfgang Tremmel

So why does the symbolic drawing of Ethernet look like this?

It began in Hawaii: ALOHA-Net

ALOHA-Net University of Hawaii, 1971

- Radio based network
- To interconnect sites
- Simple principle:
 - If you have data to send, send it
 - If you receive something while sending, stop and try again later

Robert Metcalfe - Xerox PARC

Ethernet Xerox PARC, 1973

- Instead of radio, uses a coax cable
 - For higher bandwidth
 - And more reliability
- Inspired by ALOHAnet
- Standardized in 1980
- Ethernet II in 1982, standardized as IEEE 802.3 in 1983 DECIX

https://commons.wikimedia.org/wiki/File:Parcentrance.jpg

10BASE5 10 Mbit/s Ethernet

- 10 Mbit/s
- BASE uses baseband modulation
- 5 500m max. segment length
- Hardware:
 - 1cm thick coax cable
 - "Vampire-Tap" Transceivers

Attribution: Robert.Harker at English Wikipedia https://commons.wikimedia.org/wiki/File:10Base5transcievers.jpg

10Base5 Ethernet Remember the drawing

10Base5 Ethernet Remember the drawing

10Base5 Ethernet Remember the drawing

File:ThicknetTransceiver.jpg

10BASE2 still only 10 Mbit/s Ethernet

- Hardware:
 - thin coax cable
 - BNC-"T"-connectors
- Up to 200m total length
- "Cheapernet"
- mid to late 1980s

https://twitter.com/the_mutax/status/1303700688745226240

Attribution: Dmitry Nosachev https://commons.wikimedia.org/wiki/File:3Com_3C509BC_Ethernet_NIC.jpg 15

10Base-T still only 10 Mbit/s Ethernet

- Hardware:
 - two pairs of twisted copper wires
 - 8P8C (RJ45) plastic connector
- Since 1988
- Needs an active component (hub) or switch) to interconnect

Attribution: Dmitry Nosachev https://commons.wikimedia.org/wiki/File:3Com_3C509BC_Ethernet_NIC.jpg 16

Competing standards

Token Ring 1984 - 1990s

- Developed by IBM
- 4Mbit/s, later 16Mbit/s
- Deterministic access
- Needs central Multistation Access Unit
- More complex than Ethernet
- More expensive than Ethernet **DE CIX**

https://commons.wikimedia.org/wiki/File:IBM_PCMCIA_Token_Ring_Card.jpg

a)

FDDI late 1980s - 1990s

- Fiber Distributed Data Interface
- Optical network
- 100Mbit/s speed, up to 200km size
- Frame-size of 4352 bytes
- double ring topology
- made obsolete by GigabitEthernet

Attribution: Maximilian Wilhelm

Attribution: <u>Vincent van der kussen</u> at <u>nl.wikibooks</u> https://commons.wikimedia.org/wiki/File:FDDI_Concentrator.jpeg

Back to Ethernet

Ethernet is a *broadcast* network where all devices are connected to a *shared* medium

Broadcast network One is sending, everybody is receiving

- All stations share one medium
- Only one station at a time can send data
- If two stations start sending at the same time, a collision occurs
 - Both stop sending, wait for a random time, then retry
 - This was one of the main criticisms (no guaranteed delivery)

Broadcast network One is sending, everybody is receiving

- Everybody is receiving everything
- How to avoid overload / unnecessary processing of data?
 - Each station has a unique 48-Bit address
 - Receivers address is at the beginning of each frame
 - And can be processed by the network card
 - Only frames with matching address or broadcast frames are forwarded to the CPU

Ethernet Frame Structure

Preamble	SF D	Destination MAC Address	Source MAC Address	Ethertype	Payload	Checksu
10101010 10101010 10101010 10101010	10101011	48 Bits 6 Octets	48 Bits 6 Octets	16 Bits 2 Octets	46 - 1500 Octets	32 Bits 4 Octets

Ethernet Frame Structure

Prea	mble	SF D	Destination MAC Address	Source MAC Address	Ethertype	Payload	Checksu
10101010 10101010	10101010 10101010	10101011	48 Bits 6 Octets	48 Bits 6 Octets	16 Bits 2 Octets	46 - 1500 Octets	32 Bits 4 Octets

- Preamble 56 bits of 10101010....
- Start of frame marker 8 bits: 10101011
- Destination MAC address
- Source MAC address
- EtherType (or length)
- Payload
- 32 bit checksum

Ethernet Addressing

• 48 Bit address - 6 octets

281 trillion possible addresses

managed by IEEE

- you can purchase blocks of addressesnotation examples:
 - 00:26:b0:d8:3d:8a
 - 0026.b0d8.3d8a
 - 00-26-b0-d8-3c-8a

MAC Address	Ethertype	Payload	Checksu
48 Bits	16 Bits	46 - 1500 Octets	32 Bits
6 Octets	2 Octets		4 Octets

Ethernet Addressing

- Two bits in first octect have special meaning
- one for local vs. globally unique addresses
 - unique: usually "burned" into the hardware by manufacturer
- one for unicast vs. multicast

EthernetSpecial Addresses

Preamble SF D	Destination MAC Address	Source MAC Address	Ethertype	Payload	Checksu
10101010 10101010 10101010 10101010 10101011		48 Bits 6 Octets	16 Bits 2 Octets	46 - 1500 Octets	32 Bits 4 Octets

• FF:FF:FF:FF:FF:FF

The *broadcast* address

• Received by all nodes

Ethernet Ethertype

Preamble				SF D	Destination MAC Address	Source
10101010	10101010	10101010	10101010	10101011	48 Bits 6 Octets	

Was once used to indicate size of payload

- Using values up 1500
- \rightarrow Ethertype values start at 1536
- Some well-known values:

0x0800	IPv4
0x86dd	IPv6
0x0806	ARP
0x8100	VLAN Tagged

Ethernet Today

Ethernet connections In data centers

- Usually optical fibres are used
- Various types exist (single mode, multi mode)
- Speeds are 1 GBit/s, 10 GBit/s, 100 GBit/s or 400 GBit/s
- Connections are between a switch and an end device

Ethernet at home 10Base-T

- Only wire-based connections are in use
- Speeds are 100Mbit/s or 1Gbit/s
- With a switch as a center
- Wireless Ethernet WIFI is most common

Ethernet at home 10Base-T

- 10Base-T (twisted pair) requires a central device
- To replace the yellow coax cable
- Early devices: a hub
 - Function: What is received on one port is broadcasted out on all other ports

Attribution: Zac67 https://commons.wikimedia.org/wiki/File:HP_EtherTwist_Hub8.jpg

Ethernet Switch Ethernet today

- Instead of a hub, a switch is common today
- Advantage:
 - a switch learns which devices are connected to which port
 - and only sends frames on ports they are destined to
 - fallback: unknown destinations are still broadcasted on all ports

Attribution: Wolfgang Tremmel

But... Ethernet still....

- ...usually has a max payload size of 1500 octets
 - "jumbo frames" with 9000 octets exist, but are not commonly used
- ...uses 48-bit addresses
- ... is a broadcast medium.
 - but today switches are used and connections are point-to-point

Network layers - Internet Model **Ethernet: Link Layer**

- Data units are called "Frames"
- Provides node-to-node data transfer
- Examples:
 - Point-to-Point Protocol (PPP)
 - Ethernet

Layer	Nam
5	Applica
4	Transp
3	Interr
2	Link
1	Physic

Conclusion

Please remember.... **Facts about Ethernet**

- Ethernet is a **broadcast** network
- It uses **48-Bit** addresses
 - Which are globally **unique**
- Ethernet frames have usually max. 1500 octets payload
- Today switches interconnect devices

Thank you!

academy@de-cix.net

Links used in the presentation

History of Ethernet

- <u>ALOHAnet</u>
- <u>Robert Metcalfe</u> and <u>Xerox PARC</u>
- Ethernet
 - Wikipedia entry for Ethernet
 - IEEE Standard for Ethernet
- Various types of Ethernet
 - <u>10Base5</u>
 - <u>10Base2</u>
 - <u>10Base-T</u>
- more speed
 - FastEthernet 100Mbit/s
 - <u>GigabitEthernet</u> 1000Mbit/s / 1GBit/s
 - <u>10 Gigabit Ethernet</u> 10GBit/s
 - <u>100 Gigabit Ethernet</u> (and 40 Gigabit Ethernet)

Other protocols Now mostly obsolete

- Token Ring
- FDDI
- <u>Arcnet</u>
- Econet
- <u>AppleTalk</u>

Ethernet hardware Then and now

- Historical hardware
 - •<u>Vampire tap</u> for 10Base5
 - •Attachment Unit Interface
 - <u>Coax cable</u> and <u>BNC-Connector</u> for 10Base2
 - •Ethernet Hub for 10Base-T
- Currently used hardware
 - •Twisted pair cables: Cat5, Cat6, RJ45 connector
 - •Optical fibres: Single-mode and multi-mode

Ethernet switch

DE CIX

Standards

- IEEE standards ullet
 - •802.3-2018 current standard, also here
 - •IEEE 802 committee <u>website</u>
- Registered information: Ethertype list at IANA, Public register at IEEE
- Some Internet RFCs regarding Ethernet •IP over Ethernet: <u>RFC894</u>, <u>RFC895</u> •IPv6 over Ethernet: <u>RFC1972</u>, <u>RFC2464</u>

Software

Wireshark

<u>TCPDump</u>